Serveur d'exploration sur la rouille du peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Leaf rust infection reduces herbivore-induced volatile emission in black poplar and attracts a generalist herbivore.

Identifieur interne : 000017 ( Main/Exploration ); précédent : 000016; suivant : 000018

Leaf rust infection reduces herbivore-induced volatile emission in black poplar and attracts a generalist herbivore.

Auteurs : Franziska Eberl [Allemagne] ; Almuth Hammerbacher [Allemagne] ; Jonathan Gershenzon [Allemagne] ; Sybille B. Unsicker [Allemagne]

Source :

RBID : pubmed:28418581

Descripteurs français

English descriptors

Abstract

Plants release complex volatile blends after separate attack by herbivores and pathogens, which play many roles in interactions with other organisms. Large perennials are often attacked by multiple enemies, but the effect of combined attacks on volatile emission is rarely studied, particularly in trees. We infested Populus nigra trees with a pathogen, the rust fungus Melampsora larici-populina, and Lymantria dispar caterpillars alone and in combination. We investigated poplar volatile emission and its regulation, as well as the behavior of the caterpillars towards volatiles from rust-infected and uninfected trees. Both the rust fungus and the caterpillars alone induced volatile emission from poplar trees. However, the herbivore-induced volatile emission was significantly reduced when trees were under combined attack by the herbivore and the fungus. Herbivory induced terpene synthase transcripts as well as jasmonate concentrations, but these increases were suppressed when the tree was additionally infected with rust. Caterpillars preferred volatiles from rust-infected over uninfected trees. Our results suggest a defense hormone crosstalk upon combined herbivore-pathogen attack in poplar trees which results in lowered emission of herbivore-induced volatiles. This influences the preference of herbivores, and might have other far-reaching consequences for the insect and pathogen communities in natural poplar forests.

DOI: 10.1111/nph.14565
PubMed: 28418581


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Leaf rust infection reduces herbivore-induced volatile emission in black poplar and attracts a generalist herbivore.</title>
<author>
<name sortKey="Eberl, Franziska" sort="Eberl, Franziska" uniqKey="Eberl F" first="Franziska" last="Eberl">Franziska Eberl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hammerbacher, Almuth" sort="Hammerbacher, Almuth" uniqKey="Hammerbacher A" first="Almuth" last="Hammerbacher">Almuth Hammerbacher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Unsicker, Sybille B" sort="Unsicker, Sybille B" uniqKey="Unsicker S" first="Sybille B" last="Unsicker">Sybille B. Unsicker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:28418581</idno>
<idno type="pmid">28418581</idno>
<idno type="doi">10.1111/nph.14565</idno>
<idno type="wicri:Area/Main/Corpus">000024</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000024</idno>
<idno type="wicri:Area/Main/Curation">000024</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000024</idno>
<idno type="wicri:Area/Main/Exploration">000024</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Leaf rust infection reduces herbivore-induced volatile emission in black poplar and attracts a generalist herbivore.</title>
<author>
<name sortKey="Eberl, Franziska" sort="Eberl, Franziska" uniqKey="Eberl F" first="Franziska" last="Eberl">Franziska Eberl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hammerbacher, Almuth" sort="Hammerbacher, Almuth" uniqKey="Hammerbacher A" first="Almuth" last="Hammerbacher">Almuth Hammerbacher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Unsicker, Sybille B" sort="Unsicker, Sybille B" uniqKey="Unsicker S" first="Sybille B" last="Unsicker">Sybille B. Unsicker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkyl and Aryl Transferases (genetics)</term>
<term>Alkyl and Aryl Transferases (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Basidiomycota (physiology)</term>
<term>Cyclopentanes (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Herbivory (MeSH)</term>
<term>Larva (physiology)</term>
<term>Moths (physiology)</term>
<term>Oxylipins (metabolism)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Leaves (microbiology)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Populus (microbiology)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Salicylic Acid (metabolism)</term>
<term>Spores, Fungal (physiology)</term>
<term>Volatile Organic Compounds (chemistry)</term>
<term>Volatile Organic Compounds (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Acide salicylique (métabolisme)</term>
<term>Alkyl et aryl transferases (génétique)</term>
<term>Alkyl et aryl transferases (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Basidiomycota (physiologie)</term>
<term>Composés organiques volatils (composition chimique)</term>
<term>Composés organiques volatils (métabolisme)</term>
<term>Cyclopentanes (métabolisme)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Herbivorie (MeSH)</term>
<term>Larve (physiologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Oxylipines (métabolisme)</term>
<term>Papillons de nuit (physiologie)</term>
<term>Populus (génétique)</term>
<term>Populus (microbiologie)</term>
<term>Populus (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Spores fongiques (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Volatile Organic Compounds</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Alkyl and Aryl Transferases</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alkyl and Aryl Transferases</term>
<term>Cyclopentanes</term>
<term>Oxylipins</term>
<term>RNA, Messenger</term>
<term>Salicylic Acid</term>
<term>Volatile Organic Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Composés organiques volatils</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Alkyl et aryl transferases</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Maladies des plantes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Acide salicylique</term>
<term>Alkyl et aryl transferases</term>
<term>Composés organiques volatils</term>
<term>Cyclopentanes</term>
<term>Oxylipines</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Basidiomycota</term>
<term>Larve</term>
<term>Papillons de nuit</term>
<term>Spores fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
<term>Larva</term>
<term>Moths</term>
<term>Spores, Fungal</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Gene Expression Regulation, Plant</term>
<term>Herbivory</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Herbivorie</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plants release complex volatile blends after separate attack by herbivores and pathogens, which play many roles in interactions with other organisms. Large perennials are often attacked by multiple enemies, but the effect of combined attacks on volatile emission is rarely studied, particularly in trees. We infested Populus nigra trees with a pathogen, the rust fungus Melampsora larici-populina, and Lymantria dispar caterpillars alone and in combination. We investigated poplar volatile emission and its regulation, as well as the behavior of the caterpillars towards volatiles from rust-infected and uninfected trees. Both the rust fungus and the caterpillars alone induced volatile emission from poplar trees. However, the herbivore-induced volatile emission was significantly reduced when trees were under combined attack by the herbivore and the fungus. Herbivory induced terpene synthase transcripts as well as jasmonate concentrations, but these increases were suppressed when the tree was additionally infected with rust. Caterpillars preferred volatiles from rust-infected over uninfected trees. Our results suggest a defense hormone crosstalk upon combined herbivore-pathogen attack in poplar trees which results in lowered emission of herbivore-induced volatiles. This influences the preference of herbivores, and might have other far-reaching consequences for the insect and pathogen communities in natural poplar forests.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28418581</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>09</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>220</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2018</Year>
<Month>11</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Leaf rust infection reduces herbivore-induced volatile emission in black poplar and attracts a generalist herbivore.</ArticleTitle>
<Pagination>
<MedlinePgn>760-772</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.14565</ELocationID>
<Abstract>
<AbstractText>Plants release complex volatile blends after separate attack by herbivores and pathogens, which play many roles in interactions with other organisms. Large perennials are often attacked by multiple enemies, but the effect of combined attacks on volatile emission is rarely studied, particularly in trees. We infested Populus nigra trees with a pathogen, the rust fungus Melampsora larici-populina, and Lymantria dispar caterpillars alone and in combination. We investigated poplar volatile emission and its regulation, as well as the behavior of the caterpillars towards volatiles from rust-infected and uninfected trees. Both the rust fungus and the caterpillars alone induced volatile emission from poplar trees. However, the herbivore-induced volatile emission was significantly reduced when trees were under combined attack by the herbivore and the fungus. Herbivory induced terpene synthase transcripts as well as jasmonate concentrations, but these increases were suppressed when the tree was additionally infected with rust. Caterpillars preferred volatiles from rust-infected over uninfected trees. Our results suggest a defense hormone crosstalk upon combined herbivore-pathogen attack in poplar trees which results in lowered emission of herbivore-induced volatiles. This influences the preference of herbivores, and might have other far-reaching consequences for the insect and pathogen communities in natural poplar forests.</AbstractText>
<CopyrightInformation>© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Eberl</LastName>
<ForeName>Franziska</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hammerbacher</LastName>
<ForeName>Almuth</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gershenzon</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Unsicker</LastName>
<ForeName>Sybille B</ForeName>
<Initials>SB</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Max Planck Society</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>04</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003517">Cyclopentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054883">Oxylipins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D055549">Volatile Organic Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6RI5N05OWW</RegistryNumber>
<NameOfSubstance UI="C011006">jasmonic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.-</RegistryNumber>
<NameOfSubstance UI="D019883">Alkyl and Aryl Transferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.-</RegistryNumber>
<NameOfSubstance UI="C108877">terpene synthase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>O414PZ4LPZ</RegistryNumber>
<NameOfSubstance UI="D020156">Salicylic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>New Phytol. 2018 Nov;220(3):655-658</RefSource>
<PMID Version="1">30324737</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019883" MajorTopicYN="N">Alkyl and Aryl Transferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003517" MajorTopicYN="N">Cyclopentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="Y">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007814" MajorTopicYN="N">Larva</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009036" MajorTopicYN="N">Moths</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054883" MajorTopicYN="N">Oxylipins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020156" MajorTopicYN="N">Salicylic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013172" MajorTopicYN="N">Spores, Fungal</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055549" MajorTopicYN="N">Volatile Organic Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">crosstalk</Keyword>
<Keyword MajorTopicYN="Y">multiple interactions</Keyword>
<Keyword MajorTopicYN="Y">phytohormones</Keyword>
<Keyword MajorTopicYN="Y">terpene synthases</Keyword>
<Keyword MajorTopicYN="Y">terpenes</Keyword>
<Keyword MajorTopicYN="Y">volatile organic compounds (VOCs)</Keyword>
<Keyword MajorTopicYN="Y">woody plants</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>10</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>03</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>4</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>4</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28418581</ArticleId>
<ArticleId IdType="doi">10.1111/nph.14565</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Eberl, Franziska" sort="Eberl, Franziska" uniqKey="Eberl F" first="Franziska" last="Eberl">Franziska Eberl</name>
</noRegion>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<name sortKey="Hammerbacher, Almuth" sort="Hammerbacher, Almuth" uniqKey="Hammerbacher A" first="Almuth" last="Hammerbacher">Almuth Hammerbacher</name>
<name sortKey="Unsicker, Sybille B" sort="Unsicker, Sybille B" uniqKey="Unsicker S" first="Sybille B" last="Unsicker">Sybille B. Unsicker</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarRustV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000017 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000017 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarRustV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28418581
   |texte=   Leaf rust infection reduces herbivore-induced volatile emission in black poplar and attracts a generalist herbivore.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28418581" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarRustV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Oct 27 22:23:40 2020. Site generation: Sun Jan 31 22:19:43 2021